Exercise 33

Find an equation for the plane containing the point $(1,0,1)$ and the line $\mathbf{l}(t)=(1,2,-1)+t(1,0,5)$.

Solution

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0,
$$

where \mathbf{n} is a vector normal to the plane and \mathbf{r}_{0} is the position vector for any point in the plane. In order to get \mathbf{n}, take the cross product of the direction vector $(1,0,5)$ and the displacement vector,

$$
(1,0,1)-(1,2,-1)=(0,-2,2)
$$

Doing so gives
$\mathbf{n}=(1,0,5) \times(0,-2,2)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 1 & 0 & 5 \\ 0 & -2 & 2\end{array}\right|=(0+10) \hat{\mathbf{x}}-(2-0) \hat{\mathbf{y}}+(-2-0) \hat{\mathbf{z}}=10 \hat{\mathbf{x}}-2 \hat{\mathbf{y}}-2 \hat{\mathbf{z}}=(10,-2,-2)$.
Either of the position vectors, $(1,0,1)$ or $(1,2,-1)$, will do for \mathbf{r}_{0}. Choose $\mathbf{r}_{0}=(1,0,1)$.

$$
\begin{gathered}
(10,-2,-2) \cdot(x-1, y-0, z-1)=0 \\
10(x-1)-2(y-0)-2(z-1)=0 \\
10 x-10-2 y-2 z+2=0 \\
10 x-2 y-2 z=8 \\
5 x-y-z=4
\end{gathered}
$$

